Direct growth of ultra-long platinum nanolawns on a semiconductor photocatalyst

نویسندگان

  • Yu-Lin Shen
  • Shih-Yun Chen
  • Jenn-Ming Song
  • Tzu-Kang Chin
  • Chu-Hsuan Lin
  • In-Gann Chen
چکیده

A template- and surfactant-free process, thermally assisted photoreduction, is developed to prepare vertically grown ultra-long Pt nanowires (NWs) (about 30-40 nm in diameter, 5-6 μm in length, and up to 80 NWs/100 μm2 in the wire density) on TiO2 coated substrates, including Si wafers and carbon fibers, with the assistance of the photocatalytic ability and semiconductor characteristics of TiO2. A remarkable aspect ratio of up to 200 can be achieved. TEM analytical results suggest that the Pt NWs are single-crystalline with a preferred 〈111〉 growth direction. The precursor adopted and the heat treatment conditions are crucial for the yield of NWs. The photoelectrons supplied by TiO2 gives rise to the formation of nano-sized Pt nuclei from salt melt or solution. The subsequent growth of NWs is supported by the thermal electrons which also generated from TiO2 during the post thermal treatment. The interactions between the ions and the electrons in the Pt/TiO2 junction are discussed in this study.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultra-long Pt nanolawns supported on TiO2-coated carbon fibers as 3D hybrid catalyst for methanol oxidation

In this study, TiO2 thin film photocatalyst on carbon fibers was used to synthesize ultra-long single crystalline Pt nanowires via a simple photoreduction route (thermally activated photoreduction). It also acted as a co-catalytic material with Pt. Taking advantage of the high-aspect ratio of the Pt nanostructure as well as the excellent catalytic activity of TiO2, this hybrid structure has the...

متن کامل

Application of Semiconductor Photocatalysis for Effective Elimination of Organic Contaminants from Sewage

The ZnO/SiO2 semiconductor nanophotocatalysis was synthesized via sol-gel method. Also, theplatinum particles were loaded on the ZnO/SiO2 nanoparticles by photoreductive method. Thestructure of catalyst was confirmed by X-ray diffraction (XRD), scanning electron microscopy(SEM) andfourier transform infrared spectroscopy (FT-IR). The XRD patterns of ZnO particlesdisplayed the nanoparticles have ...

متن کامل

investigation on the wettability behavior of CuxO / blackTiO2 photocatalyst nanocomposite on copper foam by combining anodizing and sol-gel methods

Smart materials have been used extensively because of the need for new energy sources. One of the most important types of these materials is the CuxO / blackTiO2 heterogeneous photocatalyst semiconductor. In this study, copper foam was used as a substrate and by performing the anodizing process in a solution of one molar of sodium hydroxide under pulsed and direct currents, a CuxO layer was for...

متن کامل

A Photocatalytic Method for the Degradation of Pyrrolidine in Water

A method for the degradation of pyrrolidine in water is described. The method relaies on the photocatalytic degradation of pyrrolidine to CO2 and NH3 by UV irradiation and using titanium dixide semiconductor as a photocatalyst. Compared with direct photolysis, the semiconductor catalytic photolysis gave consistently higher degradation yields for pyrrolidine in water. T...

متن کامل

Study nanostructures of semiconductor zinc oxide (ZnO) as a photocatalyst for the degradation of organic pollutants

In the present study, comparison of  photocatalytic activity of nanostructures semiconductor zinc oxide (ZnO) was prepared using the different methods on the degradation of organic dye such as methylene blue that was investigated. Previous studies have proved that such semiconductors can degrade most kinds of persistent organic pollutants, such as detergents, dyes, pesticides and volatile organ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011